Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tristram Chivers, James Grebinski, Masood Parvez* and Zhiyong Fu

Department of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4

Correspondence e-mail: parvez@ucalgary.ca

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.007 Å R factor = 0.059 wR factor = 0.165 Data-to-parameter ratio = 23.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The monomeric units in the title compound, $C_4H_{10}Cl_2NOP$, are linked together by $N-H\cdots O$ hydrogen bonds to give

parallel linear strands along the b axis.

tert-Butylamidodichlorophosphine oxide

Received 5 July 2005 Accepted 6 July 2005 Online 13 July 2005

Comment

Although the parent monoamidophosphoric acid $OP(OH)_2NH_2$ is well known (Emsley & Hall, 1976), *N*-substituted derivatives are not well characterized (Clark & Warren, 1963; Halmann & Lapidot, 1960). As part of our attempts to synthesize new *N*-substituted phosphoramidic acids, we investigated the reaction of *tert*-butyl-imidotrichlorophosphorane with *t*BuNH₃Cl at 373 K for 24 h in the absence of a solvent. The monosubstituted derivative, (I), was isolated in *ca* 3% yield after sublimation. Compound (I) was obtained in a higher yield (23%) by exposing *tert*-butylimidotrichlorophosphorane to moist air for 10 min.

$$Cl_3P=N'Bu + H_2O \rightarrow OPCl_2(NH'Bu) + HCl$$
(I)

The structure of (I) is composed of monomeric units (Fig. 1) linked together in parallel linear strands along the *b* axis by $N-H\cdots O$ hydrogen bonds (Fig. 2). The structure of PO(NH*t*Bu)₃, (II), also forms a one-dimensional chain through hydrogen-bonding but, in that case, there are three $N-H\cdots O$ hydrogen bonds to each O atom (Chivers *et al.*, 2003). Selected bond lengths and bond angles of (I) are listed in Table 1. The P=O double bond [P=O = 1.453 (3) Å] is *ca* 0.02 Å shorter than that in (II). The greater π -bond character in (I) is attributed, in part, to the lower degree of hydrogen bonding per O atom. In addition, the two electronegative chlorine substituents on phosphorus in (I) will generate a more polar P⁺-O⁻ bond, as reflected by the P-N bond length [P-N = 1.595 (3) Å] which is *ca* 0.04 Å shorter than

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

ORTEPII (Johnson, 1976) drawing showing the monomeric unit of (I). Displacement ellipsoids are plotted at the 50% probability level.

Figure 2

Packing diagram of the unit cell of (I). Hydrogen bonds are represented by dashed lines.

the mean P-N bond distance in (II). The unexpectedly large angle at N1 $[C1-N1-P1 = 127.3 (3)^{\circ}]$ presumably reflects the steric influence of the bulky tert-butyl substituent on N1.

Experimental

tert-Butylimidotrichlorophosphorane (1.65 g, 7.87 mmol) was exposed to air for 10 min and then the sample was stored under an atmosphere of nitrogen. After 24 h, clear colorless needle-like crystals were formed. X-ray quality single crystals of (I) (0.34 g, 1.79 mmol, 23% yield) were obtained by sublimation at 328 K at ca 10^{-3} Torr (m.p. = 379–381 K). Analysis calculated for C₄H₁₀Cl₂NOP: C 25.28, H 5.30, N, 7.37%; found: C 25.23, H 5.32, N 7.11%. NMR data $(C_6D_6, 298 \text{ K})$: ¹H NMR δ 0.99 (*s*, *t*Bu); ¹³C{¹H} NMR: δ 30.62 [*s*, $-C(CH_3)_3$], 55.79 [s, $-C(CH_3)_3$]; ³¹P{¹H} NMR, δ 5.94 (s). IR (cm^{-1}) : 3180 (*m*, *br*, $[\nu(N-H)]$), 1257 (*w*, *sh*, $[\nu(P-N)]$), 1028 (*m*, $[\nu(P=O)]$, 585 (s, $[\nu(P-Cl)]$), 547 (s, $[\nu(P-Cl)]$).

Crystal data

C ₄ H ₁₀ Cl ₂ NOP	$D_x = 1.450 \text{ Mg m}^{-3}$
$M_r = 190.00$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 6208
a = 8.256 (3) Å	reflections
b = 10.219 (5) Å	$\theta = 3.3-27.5^{\circ}$
c = 11.053 (5) Å	$\mu = 0.86 \text{ mm}^{-1}$
$\beta = 111.090 \ (2)^{\circ}$	T = 173 (2) K
$V = 870.1 (7) \text{ Å}^3$	Prism, colorless
Z = 4	0.21 \times 0.08 \times 0.06 mm
Data collection	
Nonius KappaCCD diffractometer	1538 reflections with $I > 2\sigma(I)$
ω and φ scans	$R_{\rm int} = 0.034$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}$
(SORTAV; Blessing, 1997)	$h = -10 \rightarrow 10$
$T_{\rm min} = 0.840, \ T_{\rm max} = 0.950$	$k = -13 \rightarrow 11$
6208 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.06P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.059$	+ 2.44P]
$wR(F^2) = 0.165$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\rm max} < 0.001$
1970 reflections	$\Delta \rho_{\rm max} = 0.75 \ {\rm e} \ {\rm \AA}^{-3}$
85 parameters	$\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1 Selected geometric parameters (Å, °).

P1-O1	1.453 (3)	P1-Cl2	2.0038 (17)
P1-N1	1.595 (3)	N1-C1	1.490 (5)
P1-Cl1	2.0025 (17)		
O1-P1-N1	116.98 (18)	N1-P1-Cl2	108.20 (15)
O1-P1-Cl1	111.76 (18)	Cl1-P1-Cl2	99.53 (8)
N1-P1-Cl1	106.53 (15)	C1-N1-P1	127.3 (3)
O1-P1-Cl2	112.28 (18)		

Table 2		
Hydrogen-bond geometry (Å.	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O1^i$	0.88	1.95	2.820 (4)	168
Symmetry code: (i) -	$-x + \frac{3}{2}, y + \frac{1}{2}, -$	$z + \frac{1}{2}$.		

H atoms were located in a difference Fourier synthesis and were included in the refinement at geometrically idealized positions, with N-H = 0.88 Å and C-H = 0.98 Å, and with $U_{iso} = 1.2$ and 1.5 times U_{eq} of the parent N and C atoms, respectively. The final difference map was free of any chemically significant features.

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALE-PACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

The authors acknowledge financial support from NSERC Canada and the Alberta Ingenuity Fund.

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
- Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
- Chivers, T., Krahn, M., Schatte, G. & Parvez, M. (2003). Inorg. Chem. 42, 3994-4005
- Clark, V. M. & Warren, S. G. (1963). Nature (London), 199, 657-659.
- Emsley, J. & Hall, D. (1976). The Chemistry of Phosphorus, pp. 381-382. New York: John Wiley & Sons Inc.
- Halmann, M. & Lapidot, A. (1960). J. Chem. Soc. pp. 419-424.
- Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.